Appears in Proceedings of the 4th USENIX Conference on RiteStorage Technologies.
San Francisco, CA, December 14-16, 2005. pages 59-72. USEddociation, 2005.

Ursa Minor: versatile cluster-based storage

Michael Abd-El-Malek, William V. Courtright 1l, Chuck CranoGregory R. Ganger,
James Hendricks, Andrew J. Klosterman, Michael MesnienistaPrasad,
Brandon Salmon, Raja R. Sambasivan, Shafeeq Sinnamohideen,
John D. Strunk, Eno Thereska, Matthew Wachs, Jay J. Wylie
Carnegie Mellon University

Abstract

300

. . . . 280+ [J Trace distribution g
No single encoding scheme or fault model is optima 550l O OLTP distribution
f Il dat A til t t I th t | B Scientific distribution| |
or all data. A versatile storage system allows them tc 240 W Campus distribution
be matched to access patterns, reliability requirement @5(2)8’ B Generic distribution
and cost goals on a per-data item basis. Ursa Minor g 1801

a cluster-based storage system that allows data-speci ¢ 160t
selection of, and on-line changes to, encoding schem: 2 140}
and fault models. Thus, different data types can share 2 Eg:
scalable storage infrastructure and still enjoy spe@dliz o gy
choices, rather than suffering from “one size fits all.” Ex- 60F

oo |}

periments with Ursa Minor show performance benefit: ‘2187

of 2—-3x when using specialized choices as opposed t 0
a single, more general, configuration. Experiments als Trace OLTP Scientific Campus
show that a single cluster supporting multiple workload: Workloads

simultaneously is much more efficient when the choices

are specialized for each distribution rather than forced-igure 1: Matching data distribution to workload. ~ This graph

to use a “one size fits all” configuration. When using shows the performance of four workloads run on Ursa Minor as a

. .. . function of the data distribution. For each workload, fivetdbu-
the spemahzed distributions, aggregate Cluster threuQ ions were evaluated: the best distribution for each of the fvork-

put nearly doubled. loads and a generic “middle of the road” choice for the caitecof
workloads. Although the “Scientific” data distribution pided better

performance for the “Trace” workload than the “Trace” distition,

. and the “Campus” data distribution provided better perforceafor

1 Introduction the “OLTP” workload than the “OLTP" distribution, these tfisutions
failed to meet the respective workloads’ reliability regmirents. Sec-

) . . . tion 4.3 details the workloads and data distributions. These numbers
T_O‘?'ay_s enterprise storage Is do.mmated ,by large monoére the average of 10 trials, and the standard deviationsharen as
lithic disk array systems, extensively engineered t0 prorror bars.

vide high reliability and performance in a single sys-

tem. However, this approach comes with significant ex-

pense and introduces scalability problems, because a%und in high-end storage solutions. Byrsatility, we
given storage enclosure has an upper bound on how manye . that first-order data distribution choices (e.g., data
d's.k_s It can support. TO_ reduce costs and provide SCaléncoding, fault tolerance, and data location) can be spe-
e.lb'“ty’ many are pursuing cluster-based storage SOIUE:ialized to individual data stored within a single infras-
tions (e.g-, 2. 8,9, 10, 11, 12, 18, 23)). Cluster-based ;0o Such versatility is crucial for addressing the

storage replaces the single system with a collection of 4 e demands of different classes of data. Failing to
smaller, lower-performance, less-reliable storage-sodey iqe versatility forces all data into a single point of

(sometimes referred to atorage brickk Dataand work 0 o rformancerreliability/cost trade-off space. Versa

are redundantly dlstnbuted.amgng the bricks to aCh'evefility also addresses the impact of access patterns on the
higher performance and reliability. The argument for the erformance of different data distributions. For example,
cluster-based approach to storage follows from both they, 5 accessed with large, sequential 1/0s often should be
original RAID argument27] and arguments for cluster o a5;re coded to reduce the capacity and bandwidth costs
computing over monolithic supercomputing. of fault tolerance, while randomly-accessed data often
Cluster-based storage has scalability and cost advarshould be replicated to minimize the number of disk I/Os
tages, but most designs lack the versatility commonlyper data access.

This paper describes Ursa Minor, a versatile, clusterstrating that versatility is needed to avoid significant per
based storage system designed to allow the selection ofprmance, reliability, and/or cost penalties when storage
as well as on-line changes to, the data location, encodinds shared among different classes of data. Second, it de-
block size, and fault model on a per-“data object” basis.scribes the design and implementation of Ursa Minor,
Ursa Minor achieves its versatility by using a protocol a versatile, cluster-based storage system. We are aware
family, storing variably-sized data-fragments at individ of no existing cluster-based storage system that provides
ual storage-nodes, and maintaining per-object data disaearly as much versatility, including the ability to spe-
tribution descriptions. Using a protocol family shifts the cialize fault models and to change data distributions on-
decision of which types of faults to mask from systemline. Third, it presents measurement results of the Ursa
implementation time to data creation time. This allowsMinor prototype that demonstrate the value of specializ-
each object within a single infrastructure to be protectedng according to access patterns and reliability require-
from the types and quantities of faults appropriate to thaments as well as the value of allowing on-line changes to
particular class of data. Ursa Minor’'s protocol family data distributions.

supports a per-object choice déta distribution This

includes the data encoding (replication or erasure cod-

ing), block size, storage-node fault type (crash or Byzan, .

tine), number of storage-node faults to tolerate, timing2 Versatile cluster-based storage

model (synchronous or asynchronous), and datalocatioq; day’ . icall
Storage-nodes treat all objects similarly, regardlesseft I_%_ays jnterprlse storage sg/stergs are typl_call y mono-
object's data distribution. ithic and very expensive, based on special-purpose,

high-availability components with comprehensive inter-
Experiments with our implementation of Ursa Minor val- na| redundancy. These systems are engineered and tested
idate both the importance of versatility and Ursa Minor's g tolerate harsh physical conditions and continue operat-
ability to provide it. As illustrated in Figurg, significant ing under almost any circumstance. They provide high-

performance benefits are realized when the data distribyserformance and high-reliability, but they do so at great
tion choice is specialized to access patterns and fault tolmonetary expense.
erance requirements. These benefits remain even whe

multiple workload types share a storage cluster. In addi—(L’]Ius’ter'b""S‘Ed storage is a promising alternative to to-

tion to performance benefits, capacity benefits are alsgay’S monolithic storage systems. The concept is that

realized when erasure coding is used instead of replig:ollectlons of smaller storage-nodes should be able to

cation. For example, the data distribution for the TraceprOVide. performancg and reliability competitive with to-
workload uses erasure coding to reduce space consumﬂf’lyS h|gh-end.§olut|ons, but at muph lower cost and with
tion by 50% while tolerating two crash failures: only a greater scalability. The cost reductions would come from

10% performance penalty is paid for doing this, becauseus'ng,(f\ommOd'ty cpmponents for each storage-node and
the workload is highly sequential. Similarly, specialiin explpmng economies of scale. Each storage-node would
the fault model ensures that costs for fault tolerance ar@'©Vide a small amount of the performance needed and
incurred in accordance with acceptable risks, increasing®Ve! 'eliability than required. As with previous ar-
throughput for data with lesser reliability requirements 9Uments for RAID and cluster computing, the case for

(e.g., the Scientific workload) by as much as a factor ofglugtgr-based storage anticipates tha’g high levels of re-
three over a reasonable “one size fits all” configuration. liability and performance can b_e t_)bta_lned by appropri-
) . . ~~ ateredundancy and workload distribution across storage-

change is also demonstrated. The ability to reconfigureych less expensive (per terabyte) than today's enter-

data distributions on-line enables tuning based on obpyise storage systems, while providing similar levels of
served usage rather than expected usage. This simplifigg|iapility and availability L.0].

tuning, since pre-deployment expertise about an applica- | based Iso hel ith th i hal
tion's access patterns becomes less important. MinimizE!USter- 2se storage "’}_Sr? elps with the scaling chal-
ing the amount of pre-deployment expertise and plannind€"9es inherent in monolithic storage systems. In partic-

is important for reducing the excessive administration ef- lar, once the limit on the number ,Of disks that can be in-
fort required with today’s storage infrastructures. Addi- serted into a large storage system'’s enclosures is reached,

tionally, the ability to make on-line distribution changes a second large system must be purchased and data must

allows the system to be adapted as goals and workloa(ﬁe redistributed across the systems. Avoiding this dras-
evolve tic step-function in effort and capital expenditure can

_ _ o . push administrators to purchase oversized (but mostly
This paper makes the f(_)llowmg contributions. First, it empty) systems. Most cluster-based storage designs al-
makes a case for versatile cluster-based storage, demoygy, growth of capacity and performance through the in-

cremental addition of storage-nodes, with automated balage, tolerating two or more storage-node failures is likely
ancing of the data to utilize the new resources. to be required for important data. Because of the perfor-
mance and capacity tradeoffs, however, the number of

2.1 Versatility in cluster-based storage failures tolerated must be configurable.

Fault model choices In traditional systems, a cen-
To replace monolithic storage effectively, cluster-basedralized controller provides a serialization point, sigl
storage must provide similar versatility. It must be possi-restart location, and an unambiguous storage-node (i.e.,
ble to specialize the data distribution for different ciss disk) failure indication. In contrast, most cluster-based
of data and their respective workloads. storage designs are decentralized systems, enjoying none

This section describes several choices that should be sp8f these luxuries. As a result, carefully designed data ac-
cialized to individual data based on application require-C€SS protocols are utilized to provide data consistency in
ments (e.g., fault tolerance and performance goals), adhe face of storage-node failures, communication delays,
cess patterns, and cost restrictions. Almost all mod<€lient failures, and concurrent access.

ern disk array systems allow the encoding scheme (e.gThe overheads associated with these protocols depend
RAID 5 vs. RAID 0 + 1) and stripe unit size to be cho- significantly on their underlying fault model assump-
sen on a per-volume basis. Cluster-based systems shouidns, and there are many choices. For example, one
have similar versatility. In addition, cluster-based stor might assume that faulty storage-nodes only ever crash
age introduces questions of fault model choice that haveyr that they might behave more arbitrarily (e.g., corrupt-
a greater impact than in the centralized controller archiing data or otherwise not cooperating). One might as-
tecture of monolithic storage systems. sume that clocks are synchronized and communication

Data encoding choicesData can be spread across clus-delays are bounded (i.e., synchronoudiming model)

ter storage-nodes to address two primary concerns: fauftf that storage-node reboots and transient network de-
tolerance and load balancing. In most cluster-based stofays/partitions make timing assumptions unsafe (i.e., an
age designs, assignment of data to storage-nodes is dgsynchronougiming model). Weakening failure and
namically adapted to balance load. The approach to fauliming assumptions generally make a system more ro-

tolerance, on the other hand, is often fixed for all data. Pust at the expense of additional data redundancy and

. communication.
There are two common encoding schemes for cluster-

based storage. First, data camréglicatedsuch thateach It is tempting to assume that tolerating storage-node
block is stored on two or more storage-nodes. Secondrashes is sufficient and that good engineering can pre-
data can berasure codedFor example, am-of-n era- ~ Vent Byzantine (i.e., non-crash) failures and timing
sure code encodes a data block intbagments such that faults. However, given the amount of software involved
anym can be used to reconstructitThe trade-off be- ~and the consumer-quality components that are likely to
tween these schemes is similar to that of RAIRersus Pe integrated into cluster-based storage systems, there is
RAID 0 + 1 in disk array systems. Replicated data gen-Significant risk associated with that assumption. Even
erally supports higher disk-bound throughput for non-in today’s high-end storage systems, there are mecha-
sequential accesses. On the other hand, erasure codgigms designed to mask non-crash communication and
data can tolerate failures (especially multiple failures)firmware failures within the controller and the disks. For
with less network bandwidth and storage spai®: 43. example, we have been told(] that disks occasionally

For sequentially accessed data, these benefits can be Mite data sectors to the wrong locatiénSuch a fault
alized without significant disk access penalties. corrupts two pieces of data: the old version of the data

oes unmodified (an “omission failure”) and some unas-

ociated data is replaced. Non-crash failures can be ex-

ected to increase in frequency when using less robust
mponents to construct a system.

Most modern disk array systems use data distributiong
that can tolerate a single disk failure. This is unlikely
to be sufficient in cluster-based storage systems that u
less robust components than traditional systems. Further,
other components (e.g., fans and power supplies) thahbility to change choices on-line Most cluster-based

can fail and be hot-swapped in high-end storage systemsforage designs adaptively modify the assignments of
will translate into storage-node failures in cluster-lsase data replicas/fragments to storage-nodes based on access

storage systems. The expectation, therefore, is more frd?atterns and storage-node availability. We believe that
quent Storage_node failures. Even with traditional Sysjt is desirable for other data distribution choices to be
tems, manufacturers have recognized the importance of 2Exact reasons for this sort of problem are rarely reportatifie

tolerating multiple disk failuresd]. In cluster-based stor- observed behavior is not limited to a single disk make or model. |
could be caused by bugs in firmware or by hardware glitchescediu
1RAID 5is an(n — 1)-of-n scheme. by vibration, heat, or other physical effects.

adaptable as well. If modifying such choices were easychoices, including encoding scheme, fault model, and
administrators could worry less about getting the initialtiming model. All are selectable and changeable on-line
configuration choice perfect, especially with regards toon a per-object basis.

tuning to match access patterns. Instead, applicatio_n,gAB [34] and RepStore4s] offer two encoding scheme
af‘d t.he|r stqrage could be d_eployed, and the data di choices (replication or erasure coding) rather than just
tribution choices could be adjusted based on the actugl,. FaB allows the choice to be made on a per-volume
access pattern. Even the number and type of faults tolg . ic At volume creation time. RepStore, which has
erated could be changed based on the problems observed,, | designed and simulated, uses AutoRAID-I [

in practice” algorithms to adaptively select which to use for which

By allowing changes based on observed behavior, a systata. Reported experiments with the FAB implementa-
tem can save storage administrators from having to gaition and the RepStore simulator confirm our experiences
expertise in the impacts of each physical environmentegarding the value of this one form of versatility. Ursa

and the storage behavior of each major application befor&linor goes beyond both in supporting a much broader
deploying a storage infrastructure. Instead, a trial-andrange of configuration choices for stored data, including
error approach could be used to arrive at an acceptabli@ault models that handle non-crash failures. Compared
system configuration. Additionally, on-line change canto FAB, Ursa Minor also supports re-encoding of data,

be invaluable as access patterns and goals change owaitowing configuration choices to be modified on-line.

the course of the data’s lifecycle. Pond B0] uses both replication and erasure coding for

data in an effort to provide Internet-scale storage with
2.2 Related work long-term durability. It uses replication for active ac-

. . . cess and erasure coding for long-term archiving. Al-
There is a large body of previous work in CIlJSter'bas‘:"dthough it does provide incremental scalability, it is de-

storage and in adaptive storage systems. This Sectiofyyneq for wide-area deployment rather than single-data-

overviews some high-level relationships to Ursa Minor's .o yier cjuster-based storage. Partly as a consequence, it
goal of versatile cluster-based storage. Related work foﬂoes not provide most of the versatility options of Ursa
specific mechanisms are discussed with those mEChEMinor.

nisms.
An alternative approach to cluster-based storage is to

Many scalable cluster-based storage systems have beﬁpovide scalability by interposing a prox@], such as
developed over the years. Petﬂs]L xFS [2], and Mirage [3], Cuckoo R1], or Anypoint [44]. Proxies can
NASD [13] are early systems that laid the groundwork g 04 data and requests across servers like a disk array
for today’s cluster-based storage designs, including Urs@,nygjier does with its disks. This approach to build-

Minor's. More fecent examples mcludg ,FARSITEJ_'[ing a storage infrastructure represents a middle-ground
FAB [34], EMC’s Centera §], EqualLogic's PS series poyeen traditional and cluster-based storage.

product B], Lustre 24], Panasas’ ActiveScale Storage]]

Cluster p6], and the Google file systemi?]. All of AuFoRAID [41] automates versatllt-_,\ storage in a mono-
these systems provide the incremental scalability benélithic disk array controller. Most disk array controllers
fits of cluster-based storage, as well as some provisiond/low specialized choices to be made for each volume.
for fault tolerance and load balancing. However, each®UtORAID goes beyond this by internally and automat-
of them hard-codes most data distribution choices for alically adapting the choice for a data block (between
data stored in the system. For example, Petal replicat¢8AID 5 and mirroring) based on usage patterns. By
data for fault tolerance, tolerates only server crashes (i. d0ing So, it can achieve many of the benefits from both
fail-stop storage-nodes), and uses chained declusterir@"COd'”gs the cost-effectiveness of RAID 5 storag.e for
to spread data and load across nodes in the cluster; thed¥requently used data and the performance of mirror-
choices apply to all data. xFS also uses one choice fol"d for popular data. Ursa Minor brings versatility and
the entire system: parity-based fault tolerance for servefne ability to select and change data distributions on-
crashes and data striping for load spreading. Ursa Miline to distributed cluster-based storage. To achieve Au-
nor’s design builds on previous cluster-based storage sydoRAID’s automatic adaptivity, Ursa Minor's versatility
tems to provide versatility. Its single design and imple-Should be coupled with similar workload monitoring and
mentation supports a wide variety of data distributiondecision-making logic.

3The physical challenges of data centers, such as heat atissip
and vibration, make storage fault tolerance less unifornosacin-
stances of a system. A deployment in an environment that sesiggl
more with these issues will likely encounter more failuresitbae in
a more hospitable environment.

3 Ursa Minor

Metadata ¥ ¢

Ursa Minor is a versatile cluster-based storage system. requests,
Its design and implementation grew from the desire to —
provide a high level of versatility in a cost-effective, | 2P | .=~
cluster-based storage system. R
- Storage-
Client nodes
3.1 Architecture Application
. . . . Ursa Minor
Ursa Minor provides storage afbjectsin the style of dlientlibrary | % VO eanee >

NASD [13] and the emerging OSD standar8l]. In Client
general, an object consists of basic attributes (e.g., sizBgure 2: Ursa Minor high-level architecture. Clients use the stor-
and ACLs) and byte-addressable data. Each object has4€ System via the Ursa Minor client library. The metadataled¢o

. . e . . access objects is retrieved from the object manager. Rexjioestata
numerical identifier (ambject ID) in a flat name space. ;¢ then sent directly to storage-nodes.
The system provides file-like access operations, includ-
ing object CREATE and DELETE, READ and WRITE,
GET_ATTRIBUTES and SETATTRIBUTES, etc. The pri- within the same object can have different values for any
mary difference from file systems is that there are noof these choices. Slices allow large objects to be parti-
ASCII names or directories. tioned across multiple sets of storage-nodes. Although
Xs_lices are integral to the Ursa Minor design, to simplify

The main advantage of object-based storage is that it exz, . . L
9) 9 discussion, most of this paper refers to the data distribu-

plicitly exposes more information about data stored in) .)

the system than a purely block-based storage interfachO" Of Objects rather than of slices of objects.

like SCSI or ATA, while avoiding the specific naming On-line change of an object's data distribution is arbi-
and metadata semantics of any individual file systemtrated by the object manager. The data distribution can
Specifically, it exposes the set and order of data that makbe changed for granularities as small as a single block,
up each object, as well as some attributes. This informaand clients are not prevented from accessing the object’s
tion simplifies the implementation of secure direct accesslata during the distribution change. Such a data distri-
by clients to storage-nodes—this was the primary argubution change can alter the storage locations, encoding,
ment for the NASD architecturel§]. For Ursa Minor, fault model, timing model, or block size. Sectigrtwill

it also facilitates the manipulation of data distribution describe this process in detail.

choices for individual objects.

Like NASD and other object-based storage systems3.2 Protocol family for versatile access
Ursa Minor allows direct client access to storage-nodes,

as illustrated in Figur@. Clients first consult the object Data access in Ursa Minor builds on a protocol family
manager, which provides them with metadata and authothat supports consistent read/write access to data blocks.
rization. Afterward, they can interact directly with the Each protocol family member conforms to one of two
storage-nodes for data operations. Metadata operationming models, one of several fault models, and supports
such as object creation and deletion, are done through th@ny threshold erasure coding scheme for data. Member
object manager. implementations are distinguished by choices enacted
in client-side software regarding the number of storage-
nodes accessed and the logic employed during a read

read/write protocol family it uses for data acce&§|]
. . . operation. The storage-node implementation and client-
A protocol familysupports different fault models in the :)
server interface is the same for all members. Pseudo-

same way that most access protocols support varied num- : ;

: } . code and proofs of correctness are available in separate

bers of failures: by changing the number of storage- .

. . technical reportsl6, 42].

nodes accessed for reads and writes. Ursa Minor’s proto-
col family operates on arbitrarily-sized blocks of data.

The protocol family allows each block to use any of 3-2.1 Protocol family versatility

many data encoding schemes and conform to any O1’he fault tolerance provided by each member of the pro-

many fault and timing models. tocol family is determined by three independent param-
Each object’'s data is stored as one or more ranges adters: the timing model, the storage-node failure model,
bytes, callecslices Each slice is a sequence of blocks and the client failure model. Each of these parameters
with a common block size, encoding scheme, data loprovides tradeoffs for the performance, availability, and

cation, fault model, and timing model. Different slices reliability of data.

Much of Ursa Minor’'s versatility is enabled by the

Timing model: Protocol family members are either the number of storage-nodes (and thus the number of
asynchronous or synchronous. Asynchronous membeifsagmentsy) must conform to constraints with regard to
rely on no timeliness assumptions. There are no assump-andt (the number of storage-node failures) as well as
tions about message transmission delays or executiom (a data encoding parameter). For asynchronous mem-
rates of storage-nodes. In contrast, synchronous menbers, the constraint & + b + max(m,b + 1) < n. For
bers assume known bounds on message transmission dgmchronous members, the constraintismax(m, b +

lays between correct clients and storage-nodes as well d9 < n. Full development and proof sketches for these
request processing times. and other relevant constraints (e.g., read classification

By assuming a synchronous system, storage-nodE€S)are presented by Goodson, etH[

crashes are detectable via timeouts. This allows clients to))]
contact fewer storage-nodes for each operation and trust2-3 Protocol operation and implementation

that they will get an answer from all non-faulty storage- gach protocol family member supports read and write
nodes. On the other hand, if a client incorrectly "deteCtsnoperations on arbitrarily-sized blocks. To write a block,
that a live storage-node timed out (e.g., due to overloaghe client encodes it inta fragments; any threshold-
or a network partition), it may read inconsistent data.pzged (i.e.m-of-n) erasure code (e.g., information dis-
The asynchronous timing model is able to protect againsbersm P9 or replication) could be used. Logical times-
this scenario but at the cost of additional storage—node§dmps associated with each block totally order all write
and an additional round trip during writes to generate operations and identify fragments from the same write
logical timestamp. operation across storage-nodes. For each correct write,
Storage-node failure model Each family member sup- @ client constructs a logical timestamp that is guar-
ports a hybrid failure model3g] for storage-nodes. Up anteed to be unique and greater than that of léte

to ¢ storage-nodes may fail. A subset of théailures, st complete writ¢the complete write with the highest
b, may be Byzantine fault2p], and the remaining — b timestamp). Clients form this timestamp either by issu-
must only be crash failures. Such a model can be configing GET_LOGICAL _TIME requests to storage-nodes (for
ured across the spectrum from wholly crash (bes 0) asynchronous members) or reading the local clock (for
to wholly Byzantine (i.e.h = t). synchronous members). Each of théragments is sent

The number or storage-nodes that must be contacted ft0 Its storage-node, tagged with the logical timestamp.

L : : torage-nodes provide fine-grained versioning, retaining
each operation increases with the number of failures tha . . ; .

) . . a fragment version (indexed by logical timestamp) for
the protocol is configured to tolerate. Tolerating Byzan-

tine failures increases the number of storage-nodes stif?aCh write request they execute.
farther. By choosing a configuration that can withstandTo read a block, a client issues read requests to a sub-
Byzantine storage-node failures, data is protected fronget of then storage-nodes. From the responses, the
data corruption by storage-nodes, disk firmware errors¢lient identifies theandidate which is the fragment ver-
and buggy software. sion returned with the greatest logical timestamp. The
read operation classifies the candidatecasplete in-
family tolerates an arbitrary number of crash client fail- completeor repairablebased on th’e r_1umber of read re-
sponses that share the candidate’s timestamp. If the can-

ures, and some also tolerate Byzantine client failures;;; ; o L
. : . . . didate is classified as complete, then the read operation is
Client crash failures during write operations can result : .
. . . done, and the value of the candidate is returned—by far
in subsequent read operations (by other clients) observ; . . .
.) . . . the most common case. Only in certain cases of failures

ing an incomplete write operation. As in any general : . .

X . , or concurrency are incomplete or repairable candidates
storage system, an authorized client (Byzantine or oth- . . - . .
. .) observed. If the candidate is classified as incomplete, it
erwise) can write arbitrary values to storage. Protect-

ing against Byzantine clients ensures only that the value® discarded, another read phase is performed to collect

. . . . : previous versions of fragments, and classification begins
written by a client are consistent (i.e., all clients read- . .
. . ; . new. This sequence may be repeated. If the candidate
ing a given version will observe the same value), not thai . N : o
the data itself is non-malicious. Although the implemen- > repairable, it is repaired by writing fragments back
' 9 P to storage-nodes that do not have them (with the logi-

tapon support; them’ we do not_ employ the Eyzantmecal timestamp shared by the existing fragments). Then,
client mechanisms in our evaluation of Ursa Minor.

the data is returned.

Client failure model: Every member of the protocol

Because Byzantine storage-nodes can corrupt their data-
fragments, it must be possible to detect and mask up to
All members of the protocol family guarantee lineariz- b storage-node integrity fault€ross checksunj44] are

ability [17] of all correct operations. To accomplish this, used to detect corrupted data-fragments: a cryptographic

3.2.2 Protocol guarantees and constraints

Block n Fragments m Fragments Block

:’Stripe-fragmentsE ponents: the storage-nodes store all data in the system;
P :I—'* the object manager tracks system metadata and arbitrates
""" N access to objects; the client library encapsulates system

i interactions for applications; the NFS server allows un-
N I—'—’ :I/ modified clients to use the system.

v Storage-node Storage-nodes expose the same inter-
' face, regardless of the protocol family member being
' employed—read and write requests for all protocol fam-
. _ _ ily members are serviced identically. Clients communi-
Figure 3: Erasure coding example. This example shows a 3-of- cate with storage-nodes via a TCP-based RPC interface.
5 erasure encoding/rRITE and thenrReAD of a block. OnwRITE, For write r t tor nod rovide an interf t
the original block is broken into three stripe-fragments amal code- O_ € requests, sto age-. _0 €s p 0 .e a erface to
fragments, then stored on five separate storage-nodexe®p, any ~ Write a fragment at a specified logical timestamp. For
three fragments (stripe or code) can be retrieved from thragtenodes read requests, clients may request the version of a frag-
to reconstruct the original block. ment with the greatest logical timestamp or a previous

version by specifying a specific timestamp. Several other

hash of each data-fragment is computed, and the set &perati_ons are supported, including retrievi.ng.the great-
n hashes are concatenated to form the cross checksufift logical tl_mest_amp of a fragment and retrieving a frag-
of the data-itend. The cross checksum is stored with MENtS version history.
each data-fragment, as part of the timestamp, enablinequests to storage-nodes address data fragments by
corrupted data-fragments to be detected by clients duringlock number because the fragment size is not fixed.
reads. Our implementation uses MCE for all hashes, Fragment sizes vary for three reasons. First, the data
but any collision-resistant hash could be substituted. block size (for protocol read/write operations) is config-
The protocol implementation includes a number of per-urable and should be chosen pased on data access pat-
derns (e.g., to match the page size for database activity).

formance enhancements that exploit its threshold natur : blechsize
For example, to improve the responsiveness of write op_Second, erasure coding result M bytes per frag-
ent. Third, the storage-node will sometimes be asked to

erations, clients return as soon as the minimum numbe?!

of required success responses are received; the remaingld information about in-progress distribution changes

der complete in the background. To make read opera|_nstead of data. On a write, the storage-node accepts

tions more network efficient, only: read requests fetch whatever number of bytes the client sends and records
actual fragment contents, while all fetch version histo—them’ indexed by the specified object ID, block number,

ries. If necessary, after classification, extra fragmergs a and tlmestamp. Onaread, the st.qrage—pode returns what-
fetched according to the candidate’s timestamp. ever content it holds for the specified object ID and block

number.

Our implementation supports both replication andran
of-n erasure coding scheme. #f = 1, then repli-
cation is used. Otherwise, our base erasure code i
plementation stripes the block across the firstfrag-
ments; eaclstripe-fragmenis % the length of the orig-
inal block. Thus, concatenation of the first frag-

Each write request implicitly creates a new version of
mt_he fragment, indexed by its logical timestamp. A log-

structured organizatior3B] is used to reduce the disk

I/O cost of data versioning. Multi-version b-trees 86]

are used by the storage-nodes to store fragments. Frag-

ments produces the original block. Because “decoding'ment versions are kept in a per-object b-tree indexed by a

with the m stripe-fragments is computationally less ex- 2 tUPI€ (blocknumber, timestamp). Like previous re-

pensive, the implementation preferentially tries to readsear_Ch 28, 37, our expenences indicate that r_etammg
them. The stripe-fragments are used to generatte- versions and performing local garbage collection come

fragmentsthat provide the necessary redundancy (i.e.,with minimal performance cost (a few percent) and that
the remaining: — m fragments) via Rabin’s information it is feasible to retain version histories for several days.

dispersal algorithmZ9]. Figure 3 illustrates how stripe- Garbage collection of old versions is used to prevent ca-
and code-fragments are stored. pacity exhaustion of the storage-nodes. Because write
completeness is a property of a set of storage-nodes, a
storage-node in isolation cannot determine which local
fragment versions are safe to garbage-collect. A frag-

In addition to the protocol family used for read and write Ment version can be garbage-collected only if there ex-

Operationsy Ursa Minor is Composed of several key CoijtS a later Complete write for the Corresponding block.
Storage-nodes classify writes by executing the read pro-

3.3 Ursa Minor components

4In the special case of replication, a single hash is sufficien

tocol in the same manner as a client, excluding the actudlFS server Access to data stored in Ursa Minor clearly
data fetches. This garbage collection typically completesnvolves non-standard protocols. To support unmodified
in the background, before writes are flushed to disk, andlients, we have implemented a user-level NFS server
it can be batched across a number of data blocks. that exports files and directories stored as objects in Ursa
inor. It supports UDP-based NFS version 3, and it uses
the Ursa Minor client library to read and write data in the
system. File and directory contents are stored as object
Jfata, and thelFs.ATTR structure for each is stored in the

latest timestamps (including the cross checksums) adirSt block of the corresponding object. Directories map
sociated with fragments. The hit rate of the timestamp!!l® games to FIJrs;? M&?Or object IDs, which in turn are
cache is crucial for performance, as it eliminates disk acUSed as NFS file handles.
cesses for storage-nodes that are queried just to ensugich an NFS server is not intended as the primary

consistency (rather than to retrieve onerofragments). method of access to a cluster-based storage system like

Object manager. The object manager maintains Ursa Ursa Minor—a better choice being a parallel-access file
Minor metadata about each object, including data disSYSte™M- II—Igwelver, our NFS server is convenient for in-
tribution. Clients send RPCs to the object manager tgFremental deployment.

create and delete objects, access attributes, and retrieve

distributions and authorizations for accessing data. 3.4 On-line change of data distribution

To access data, a client sends the object ID and byte off- -) .)

set to the object manager and, if it has appropriate acced8 addition to create-time versatility, Ursa Minor sup-
rights, gets back alice descriptorand a capability. The ports.on—llne chgr!ge of an object’s data d|§tr|but|on. This
slice descriptor details the data distribution of the slicePermits an administrator or automated tuning tool to cor-
containing the specified byte offset, including the byter?Ct poorly chosen dlstrlbgtlons and to change distribu-
range, block size, block numbers, encoding scheme, faultons as access patterns, risks, and goals evolve.
model, timing model, and list of storage-nodes. The ob-To transition between data distributions, Ursa Minor
ject manager maintains one or more slice descriptors fomakes use oback-pointers A back-pointer is a copy
each object, as needed. of an old data distribution stored as the initial version of

The object manager implementation uses Berkele)bl‘)CkS in a new data distribution. This provides a link
DB [25] b-trees, stored in objects, to organize and indexetween the new distribution_and the old, obviating the
the Ursa Minor metadata. To enable crash recovery ofeed to halt client access during the data re-encode step.

the object manager, Berkeley DB was extended to supA reader can follow the back-pointer to the last data writ-
port shadow paging. ten in the old distribution if no data has yet been written

. .) to the new.
The object manager implementation does not currently

provide real capabilities; the field is empty and all clientA distribution change proceeds in four steps. First, the
requests are serviced by storage-nodes without actual aQPiect manager installs back-pointers to the old distribu-
thorization. The “revocation” of capabilities is handled tion by writing them to the storage-nodes that will store
with callbacks to clients rather than communication with the néw distribution. One back-pointer is written for each

storage-nodes. Although not acceptable for deployment)€W block® Second, the object manager revokes client
this should not affect performance experiments. access to the affected range of blocks. Third, the object

. .)) . . manager updates its metadata with the new distribution
Client library - The client library provides a byte- ,nq resumes issuing capabilities. Clients learn of the new
addressed object interface to application code, hiding thg;sripytion when they ask the object manager for access.

details of Ursa Minor. Itincludes a protocol library that, Fqyrih, clients access data according to the new distribu-
given the data distribution, handles the data encoding ang, while it is being copied, in the background, from the
protocol execution on behalf of the caller. The client li- ;4 o the new distribution.

brary also hides other Ursa Minor details, such as inter-

actions with the object manager. The client library is justPuring step four, clients write directly to the new distri-
a convenience for programmers, and it is not trusted b)p_utlon. When a client reads data from the new distribu-

storage-nodes or object managers any more than applicdon: it may encounter either a back-pointer or data. If it
tion code. encounters a back-pointer, the client library will proceed

The storage-node implementation is based on the S
object store 36, 37]. It uses a write-back cache for
fragment versions, emulating non-volatile RAMLhe

storage-node additionally maintains a sizeable cache

6This operation could be batched to improve the efficiency of in
50ur storage-nodes are battery-backed, but our implementatio stalling back-pointers, but back-pointer installationds a critical-path
does not yet retain the cache contents across reboots. operation.

to access the identified old distribution. Once it encoun4.1 Experimental setup
ters data, it proceeds normally. Note that the data read by))
a client in step four may have been copied from the oldAll €xperiments were run using Dell PowerEdge 650 ma-

distribution or it may be newly written data originating chines equipped with a single 2.66 GHz Pentium 4 pro-
since the distribution was changed. cessor, 1GB of RAM, and two Seagate ST33607LW,

) n 36 GB, 10K rpm SCSI disks. The network configuration
The L}rsg M!nor component that transﬁyons data'fro_rn theconsisted of a single Intel 82546 gigabit Ethernet adapter
old distribution to the new (step four) is calledd&tri- i, oach machine, connected via a Dell PowerConnect
bution coordinator It copies data in the background, 5554 switch. The machines ran the Debian “testing” dis-
taking care not to write over data already written by ayp\tion and used Linux kernel version 2.4.22. The same
client to the new distribution. To ensure this behavior, o hine type was used both as clients and storage-nodes.

the coordinator must set the timestamp for data it writes]-he storage-nodes used one of the two local disks for
to be after the timestamp of the back-pointer but beforedata; the other contained the operating system.

the timestamp of any new client writes. The required gap

in timestamps is created either by pausing after installing

the back-pointers (in the synchronous case) or by resend4 .2 Baseline NFS performance

ing a fixed logical timestamp (in the asynchronous case).

This section uses application-level benchmarks to show

One of the trickier aspects of data distribution change . :
. o that Ursa Minor achieves reasonable performance. The
arises when the data block size is changed. Changes

the block size (used to break up the byte stream int rsa Minor NFS server’s performance was compared to
. P yie Fhat of the Linux kernel-level NFSv3 server. Both NFS
blocks on which the protocol operates) will alter the

number of blocks needed for a given byte range ThiServers were configured to communicate with clients us-
y [ng UDP, and.in both cases, they ran on dedicated_ ma-
ranges of data bytes in an object. This problem is ad_(:hlnes. The Linux NFS server exported an ext3 partition
; i that resided on a dedicated local disk. The Ursa Minor
dressed by decoupling the block numbers used for stor; .
age from the byte offsets accessed by clients—a slic<'a\I FdS Server e>f<_porte((jj data sto;zi 'c\>/|nBa s]:ndgle storage-noge
descriptor identifies the block numbers explicitly rathergg M\IIBV&:)Sf ;3:;3; recactr?eusTie storage(-)no da;allq;:g% 4e0 ?AnB
than having clients compute them. A new range of blockmc data cache and 64 MB; of metadata cache
numbers within the object is used for the new distribu- '
tion, eliminating any conflict and enabling the use of the The performance of the two systems was compared using
fixed logical timestamp (mentioned above) for the asynthe TPC-C and Postmark benchmarks as well as a sim-
chronous timing model. ple source-tree compile benchmark. The TPC-C bench-
Ursa Minor’'s approach to on-line distribution change mark [39] simulates an on-line transaction proce;sing
minimizes blocking of client accesses and allows incre—gaft:\lt\)/azz;ygggngmzegi;zggnt;atr:) Szcgfnnalf%r:frfgzrm
mental application of change. Client access is only in-

: . of records. The disk locations of these records exhibit
terrupted during the actual metadata update at the objecﬁhle locality. TPC-C was run on the Shore database

manager. Further, the notion of slices allows a distribu- :
tion change for a large object to be performed pieceme torage manages] and c_onflgurgc_j to_ use 8kB pages,
Owarehouses and 10 clients, giving it a 5 GB footprint.

rather than all at once. In addition, the coordinator Canr, - Shore volume was a file stored on either the Linux
move data to the new distribution at whatever rate is APNES server or the Ursa Minor NES server

propriate. Since migration is tracked by the object man-

ager and the distribution coordinator’s actions are idemPostmark 19] is a user-level file system benchmark-
potent, coordinators that fail can be easily restarted. ~ ing tool designed to measure performance for small
file workloads such as e-mail and netnews. It mea-
sures the number of transactions per second that the
system is capable of supporting. A transaction is ei-
ther a file create or file delete, paired with either a read
This section evaluates Ursa Minor and its versatility in O’ an append. The conflgl.!ratlon parameters qsed were
three specific areas. First, it verifies that the baseline per50000 files, 20000 transactions, and 100 subdirectories.
formance of NFS with Ursa Minor is reasonable. Sec-l Other parameters were left as default.

ond, it shows that Ursa Minor’s versatility provides sig- We constructed the “um-build” benchmark to measure
nificant benefits for different synthetic workloads. Third, the amount of time to clean and build the Ursa Minor
it confirms that the Ursa Minor prototype can efficiently source tree. The benchmark copies the source tree onto a
perform on-line changes of an object’s data distribution.target system, then cleans and builds the Ursa Minor pro-

4 Evaluation

Linux NFS Ursa Minor In order to explore the trade-offs in choosing data dis-
TPC-C 447tpmC (2.3) | 993tpmC (13) tributions, four synthetic workloads were chosen to rep-
Postmark 17.9tps (.01) 15.0tps (0.0) resent environments with different access patterns and
um-build 1069s (5.3) 874 s (2.0) different concerns about reliability, capacity, and perfo
mance.

Table 1: Macro-benchmark performance. This table shows several - This simul Vsi .
macro-benchmarks used to compare the performance of the Ursa Mi-rrace- This simulates trace analysis, common in re-

nor NFS prototype against the Linux NFS server. Standaréhtiens ~ Search environments. It was modeled as streaming reads
based on ten trials are listed in parentheses. with a request size of 96 kB. We assumed that this data
must tolerate two storage-node crash failures, since trace

. L data can be difficult to re-acquire.
totype. The results provide an indication of storage sys-

workload. The source tree contained 2144 files and greW/as modeled as random 8 kB reads and writesina 1:1 ra-
from 24 MB to 212 MB when built. tio. We assumed that this data must tolerate two storage-

node crash failures, since such information is costly to

Table1 shows performance for random 1/O (TPC-C and lose.

Postmark) and system development (um-build) work- o

loads. Overa", the two systems performed ComparaSClentlflc: This simulates the temporary data generated
structured layout allowed it to perform better than theS€quential reads and writes with a 1:1 ratio, using 96 kB
Linux NES server for TPC-C and um-build. How- requests. Because this data is generally easy to recon-
ever, the extra network hop between the NFS server angtruct, it did not need to tolerate any failures.
storage-node added latency to I/O requests, hurting Ursgampus This simulates general academic computing. It
Minor’s performance for Postmark. These results showyas based on an analysis of the Harvard CAMPUS NFS
the_pro_totype implementation_ _is suitable for an investi-trace [7], a mainly email workload. It was modeled as
gation into the value of versatility. a90% sequential and0% random access pattern, using
8kB requests. Fifty-five percent of accesses were reads.
We assumed that this data must tolerate one storage-node

4.3 Ursa Minor: Versatility crash failure.

This section reports the results of several experiment$Ve ran an experiment for eacivorkload, distributioh

that demonstrate the value of Ursa Minor's versatility. pair. In each experiment, six storage-nodes were used,
These experiments access Ursa Minor directly via theand twelve clients ran the given workload with the spec-
client library, not through the Ursa Minor NFS server. ified distribution. Each client accessed a single 150 MB
The first three experiments explore matching distribu-object.

tions to wprkloads, and the fourth experiment shows thq:or each workload, we determined a specialized distribu-
costs of different storage-node fault models. tion that provides it with the highest performance given
For these experiments, the working set was larger thathe twelve client and six storage-node system configura-
the combined client and storage-node caches. Th&on. We warmed the cache, then measured the through-
storage-nodes used a 32 MB data cache and a 64 MBut of the system. After trying the workload on the
metadata cache, ensuring that most data accesses wesset of the possible distributions where the failure re-
served from disk and metadata (e.g., version history inquirements and block size match the workload, we chose
formation) remained cached. the encoding that was most space efficient but still had
throughput withinl0% of optimal.

4.3.1 Specializing the data distribution We also determined a “generic” distribution that pro-
o ~ vided good all-around performance for the four work-
The performance and reliability of data stored in @jgads. In order to determine this encoding, we ran each
cluster-based storage system is heavily influenced by thgf the workloads on the encodings that met the failure
distribution chosen for that data. By providing versatil- requirements of the most stringent workload. For each
ity, a system allows data distributions to be matched tncoding, we tried an 8 kB block size and all block sizes
the requirements of each dataset. Without this versatilityihat are multiples of 16kB up to a maximum size of
datasets are forced to use a single distribution that is exg6 kB. The “generic” distribution was chosen to mini-
pected to perform adequately on a variety of workloadsyize the sum of squares degradation across the work-

Such compromise can lead to a significant decrease ifhads. The degradation of a workload was calculated
performance, fault tolerance, or other properties.

Workload Encoding m| t | n | Block 50
size L1 Generic distribution
_ [Specialized distributions
Trace Erasurecoding| 2 | 2 | 4 | 96kB a0t
OLTP Replication 1123 8kB w
Scientific| Replication | 1 | 0 | 1 | 96kB g % %
Campus Replication 11112 8kB g
Generic Replication 1123 8kB 5
% 20F
C
Table 2: Distributions. This table describes the data encodings for th S
experimental results in Figurdsand4. The choice for each workload
was the best-performing option that met the reliability regpients 10]
and used six or fewer storage-nodes. The “generic” digtabunet all
workloads’ fault tolerance requirements and performed webss the o ﬁ
set of workloads. Trace OLTP Scientific Campus

Workloads

as the percentage difference in bandwidth between us-
ing the specialized distribution and the “generic” distri- Figure 4: Matching distribution to workload on a shared cluster.
bution. This penalized encodings that disproportionaterThiS experiment shows the performance of the four workloadsnwh
o L they are run concurrently on a shared set of storage-nodesreBults
hurt a specific workload. The. d'SF”bL,"'Or_‘S Chos'en 1EO.rshow that, by specializing the distribution for each wogkothe per-
each workload, and the “generic” distribution are identi- formance in aggregate as well as the performance for the hdivi
fied in Table2. workloads improves significantly. These numbers are the geash10
trials, and the standard deviations are shown as error bars.
Figure 1 on pagel shows each workload using each of

the five distributions in Tabl@. As expected, specializ-

ing the distribution to the workload yields increased per-loads, potentially at the same time. As such, we per-
formance. The performance of a workload on a distri-formed experiments to determine the impact of sharing
bution specialized to another workload was poor, result-a cluster among workloads while matching the distribu-
ing in up to a factor of seven drop in performance. Thetions to those workloads. In the previous experiment,
generic distribution led to more than a factor of two dropthe specialized versus generic distributions were com-
in performance for many of the workloads. The one ex-pared in isolation. For this experiment, all workloads
ception was OLTP, which performed the same with theare run simultaneously. Figudeshows the performance
generic encoding, since this encoding is the same as thef each workload when all four were run concurrently
best encoding for OLTP. on the same set of storage-nodes—first with the generic

Each of the four workloads performed best when usingdistribution, then with the specialized distributionseSp

a different data distribution. For example, the best en_cializing the distribution to the workload gave improve-

coding for the Trace workload was 2-of-4 erasure Cod_ments to all of the workloads, rapging_ fraa for the

ing because it provided good space-efficiency as well ag’race workload td 71% for the Scientific workload.

good performance. A 1-of-3 scheme (3-way replication)This shows that the cost of using a one-size-fits-all dis-
provided similar performance, but requiréd% more tribution is high. Moving from the generic distribution
storage space—a costly “feature” for large datasets likdor each workload to the specialized distribution for each
traces. A replicated encoding was best for OLTP becausworkload caused the aggregate throughput of the storage-
it used just one storage-node per read request (for dataodes to increase ov@6%, from 31 MB/s to 61 MB/s.

gccess). The smallest allowable amou'nt. 01_‘ redundanci,sed on Ellard’s study of Harvard's NFS system [
(i.e., the smallest) was best, both to minimize the ca- it js apparent that real-world workloads are mixes. The
pacity overheads and to minimize the cost of writes. gy,died NFS volumes showed random and sequential ac-
The Scientific workload performed best with a 1-of-1 en-cesses, varied read/write ratios, and temporary as well as
coding because this incurred the lowest cost for writeslong-lived data. Our results show that such varied work-
The best encoding for the Campus workload was a 1loads could benefit greatly from the per-object versatility
of-2 scheme, which incurred the lowest number of I/Osthat Ursa Minor provides.

while still providing the required fault tolerance.

4.3.3 Specializing the block size

4.3.2 Sharing the Ursa Minor cluster .) i
The data block size is an important factor in perfor-

The Ursa Minor vision is to provide a single storage mance. Figuré shows the effect of block size on per-
infrastructure suitable for hosting many different work- formance for two workloads in Ursa Minor. It shows

20 Faults Synchronous Asynchronous
1 32 kB random I/O
1 64 kB random /O (total, byz)

1/0 15.3MBJ/s (.13) | 15.8 MBJ/s (.15)
15f = 1 1/1 15.3MB/s (.10) | 11.3MB/s (.15)
2/2 6.9 MB/s (.10) N/A

Table 3: Fault model performance comparison. This table lists the
aggregate bandwidth for the OLTP workload, using distidng that
can withstand different types and numbers of storage-natleds. It
shows the bandwidth as a function of the number and type dffand
the synchrony model. In all cases, replication & 1) was used. The
H number of storage-nodes, that each object was spread across, ranged

Bandwidth (MB/s)
S
}

a1
T
I

from two (crash/synchronous) to five (two Byzantine/syoctous).
Performance for the configuration tolerating two Byzantindufes
8 16 32 64 128 with an asynchronous timing model is not shown since it requitere
Block size (kB) than the available, six, storage-nodes. All numbers shoetheraver-
age of 10 trials, with the standard deviations shown in pheses.

Figure 5: Matching block size to request size. This graph illustrates
the importance of matching Ursa Minor’s block size to the aggion’s
block size. In this experiment, a client performed random I/ih\a

1:1 read/write ratio. The client I/O sizes were either 32 kB54 kB,
aligned on I/O size boundaries. The block size of the objestvaried This section describes three experiments that demon-

between 8kB and 128 kB. This experiment used a single clietitban ~ strate Ursa Minor's support for on-line data distribu-
single storage-node. These numbers are the average of B0 @@ tjon change. To illustrate the effect of re-encoding data
the standard deviations are shown as error bars. i
to match workload access characteristics and the subse-
quent benefits, we constructed a synthetic workload in
the bandwidth with a single client that issued an equaWwhich a single client accessed a 2 GB object randomly,
number of read and write requests to a single storageudsing an access block size of 64 kB. In the original en-
node. The storage block size was varied between 8 kBoding, the object resided on a single storage-node and
and 128 kB, while the client request size remained conthe block size for the data was 128 kB. During the exper-
stant. The first workload used a 32 kB request size, andment, it was re-encoded to use a 64 kB block size as well
the other used a 64 kB request size. Performance waas migrated to a different storage-node.
best when Ursa Minor used a block size that matched th%igureG illustrates the effect of re-encoding data as a

client's requests. When the block size is smaller than thg,-tion of the workload's read:write ratio. Ursa Minor’s

client request size, accesses have to be splitinto multiplg, .remental re-encoding process is contrasted to another
requests. When the block size is too large, reads musfay of re-encoding: blocking access to the object until
fetch unnecessary data and writes must perform readr'e-encoding completes.

modify-write operations.

4.4 Ursa Minor: On-line change

Ursa Minor's method of changing the distribution incre-
mentally (using back-pointers) has minimal impact on
the client’s requests and completes within a reasonable
Ursa Minor provides fault model versatility, allowing the amount of time. This is true for both the back-pointer
number and types of failures tolerated to be configurednstallation period and the coordinator copy period. Ad-
on a per-object basis. Applications that can accept somditionally, for a write-mostly workload, the role of the
risk with regard to reliability should not pay the capacity coordinator is less important because the workload’s
and performance costs associated with high degrees ofrites assist the re-encoding process (back-pointers are
fault tolerance. Yet, it is important to provide sufficient overwritten with data as clients perform writes). A
fault tolerance for important data. write-mostly workload also benefits quickly from the re-

d encoding process, because all writes are done with the

4.3.4 Specializing the fault model

Table 3 shows the performance of the OLTP workloal Al X
when tolerating different types of faults. This experiment "€ efficient encoding.

used 12 clients and 6 storage-nodes. The table illustratdsigure 7 illustrates the process of re-encoding for the
how, in general, making the data more robust (e.g., amfPC-C benchmark running over Ursa Minor's NFS
asynchronous timing model instead of synchronous oserver. In this setup, the benchmark spawns 10 client
withstanding more failures) impacts a workload’s per-threads on a single machine that accessed one ware-
formance. These performance impacts would likely behouse with a footprint of approximately 500 MB. The
unacceptable if they affected all data, but the resultingdatabase is originally encoded to use two-way replication
robustness benefits could be necessary for critical data.and the block size for the database object was 64 kB. The

35 ‘ ‘ ‘
12 L 2 i
&30 g -
10 o0000d @t S .
—~ PO 2 asantd bt c T
% p S 251 T o o -
Q 7] =
s ° 8 50! = - *
= c 20 8 ic 8 B
<] = 5] 2
S 6 s I g 1
Z =5 15f ¥ 15 5 _
c 1, a2 | 8 & i |
§ 5
5 10 WM _
o—o mostly writes (1:2) o L \%]
2 @~ mostly reads (2:1) i = 5 B
a—a mostly writes (blocking) | | |
! A ! ! | | |
% 100 200 300 400 500 09 100 200 300 200
Elapsed time (s) Elapsed time (s)

Figure 6: Distribution change. This graph shows the effect of migra- - Figure 7: In-place re-encoding of a live database system. This
tion and re-encoding as a function of the workload’s reaidevatio. graph shows the positive effect of re-encoding on the tHipugthat
Each point is an average of ten trials. The standard devi&ioeach e TPC-C benchmark sees when accessing the underlyingagatab
point was less than 0.5MB/s. The back-pointer installabegan at Ten trials are averaged and the standard deviation is lassttps for
time 130, and the migration and re-encode began at time 140. Th@gach data point. Re-encoding changed the default blockosigé kB
“blocking” case completed quickly but denied access to thieluring 19 match the client’s request size of 8 kB. The database wéisatsyl
the distribution change. on two storage-nodes and the re-encoding happened in-place

database access size for TPC-C was 8kB, causing inefo access patterns and requirements can improve perfor-
ficient access, especially when writing to the databasemance by a factor of two or more for multiple workloads.
Writing an 8 kB page incurred the cost of first reading aFurther, the ability to change these choices on-line al-
64 kB block and then performing a 64 kB write. lows them to be adapted to observed access patterns and

In Figure 7, the coordinator performed a re-encode in-¢hanges in workloads or requirements.

place (using the same storage-nodes) to match the data

block size to the access size. Because the re-encode

used the same set of storage-nodes, there was contentigﬁqcknowledgements

between the coordinator and the client, which caused

a performance drop during the back-pointer installationWe thank the members and companies of the PDL Con-
phase. The re-encode process took less than three migertium (including APC, EMC, Engenio, Equallogic,
utes and upon completion, the client achieved approxiHewlett-Packard, HGST, Hitachi, IBM, Intel, Microsoft,
mately three times higher throughput from the storageNetwork Appliance, Oracle, Panasas, Seagate, Sun, and
nodes. Veritas) for their interest, insights, feedback, and sup-
Jort. We also thank Intel, IBM, and Seagate for hard-
ware donations that enabled this work. This material
is based on research sponsored in part by the National

This distribution change completed in under three min_Science Foundation, via grant #CNS-0326453, by the

utes and impacted the foreground workload by less thaho‘Ir Force Research Laboratory, under agreement num-

5%. Such a distribution change is valuable when storagé)e; F49620_01_1_043b3' bg;;glAgrmoyleesg;é%h Ofgicbe,
space is at a premium, because it reduces the capacitif'®" agreement number D/ e » and by
overhead from 00% to just25%. National Science Foundation Graduate Research Fel-

lowship. James Hendricks and Matthew Wachs are sup-
ported in part by NDSEG Fellowships, which are spon-
sored by the Department of Defense.

An additional experiment was conducted that change
the distribution of the TPC-C database fromlaof-
2 (mirroring) encoding to al-of-5 encoding scheme.

5 Conclusions

Versatility is an important feature for storage systems References
Ursa Minor enables versatility in cluster-based storage, _ _
complementing cluster scalability properties with the [1 A Adya, etal. FARSITE: federated, available, and rlastor-

- T LT age for an incompletely trusted environment. Symposium on Op-
f"‘b"'ty to Sp_eC|a||Ze the data dIS'[I’I_ij[I(_)n for each d?ta erating Systems Design and Implementation. USENIX Associa-
item. Experiments show that specializing these choices tion, 2002.

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

T. E. Anderson, et al. Serverless network file systerdCM
Transactions on Computer Systerh4(1):41-79. ACM, Febru-
ary 1996.

S. Baker and J. H. HartmarThe Mirage NFS routerTechnical
Report TR02-04. Department of Computer Science, The Univer-27]
sity of Arizona, November 2002.

B. Becker, et al. An asymptotically optimal multiversiortiee.
VLDB Journa) 5(4):264-275, 1996.

M. J. Carey, et al. Shoring up persistent applicationGMVASIG-
MOD International Conference on Management of Data. Pub-
lished asSIGMOD Record23(2):383-394. ACM Press, 1994.

P. Corbett, et al. Row-diagonal parity for double diskuee cor-
rection. Conference on File and Storage Technologies. USEN
Association, 2004.

D. Ellard, et al. Passive NFS tracing of email and researatk-
loads. Conference on File and Storage Technologies. USENIX[31]
Association, 2003.

EMC Corp. EMC Centera: content addressed storage sy§em,
tober 2005. http://www.emc.com/products/systems/ceigpfz.
openfolder=platform. 33]
EqualLogic Inc. PeerStorage Overview, October 2005.
http://Iwww.equallogic.com/pages/produtezhnology.htm.

S. Fralund, et al. FAB: enterprise storage systems onessfing.

Hot Topics in Operating Systems. USENIX Association, 2003.
G. R. Ganger, et al.Self-* Storage: brick-based storage with
automated administrationTechnical Report CMU-CS-03-178.
Carnegie Mellon University, August 2003.

S. Ghemawat, et al. The Google file system. ACM Symposium
on Operating System Principles. ACM, 2003.

G. A. Gibson, et al. A cost-effective, high-bandwidttors
age architecture. Architectural Support for Programming-Lan
guages and Operating Systems. Publishe8l@PLAN Notices
33(11):92-103, November 1998.

L. Gong. Securely replicating authentication sersicelnter-
national Conference on Distributed Computing Systems. IEEE[3g]
Computer Society Press, 1989.

G. R. Goodson, et al. Efficient Byzantine-tolerant erascoded
storage. International Conference on Dependable Systeths an[3g]
Networks, 2004.

G. R. Goodson, et al.The safety and liveness properties of a
protocol family for versatile survivable storage infrasttures
Technical report CMU-PDL-03-105. Parallel Data Laborator
Carnegie Mellon University, Pittsburgh, PA, March 2004.

M. P. Herlihy and J. M. Wing. Linearizability: a correess con-
dition for concurrent objects ACM Transactions on Program-
ming Languages and Systerhi&(3):463—492. ACM, July 1990.
IBM Almaden Research Center. Collective Intelligentdgs,
October, 2005. http://www.almaden.ibm.com/StorageSystems/
autonomicstorage/CIB/index.shtml.

J. Katcher. PostMark: a new file system benchmarkechnical
report TR3022. Network Appliance, October 1997.

S. Kleiman. Personal communication, October 2002. Networ
Appliance, Inc.

A. J. Klosterman and G. R. Gangetuckoo: layered clustering

for NFS Technical Report CMU-CS-02-183. Carnegie Mellon
University, October 2002.

L. Lamport, et al. The Byzantine generals problehCM Trans-
actions on Programming Languages and Systei{8):382—401.
ACM, July 1982.

E.K.Leeand C. A. Thekkath. Petal: distributed virtdesks. Ar-
chitectural Support for Programming Languages and Operating
Systems. Published &GPLAN Notices31(9):84-92, 1996.
Lustre, October 2005. http://www.lustre.org/.

(25]

(26]

(28]

[29]

(30]

(32]

(34]

(35]

(36]

(37]

[40]

[41]

[42]

(43]

[44]

[45]

M. A. Olson, et al. Berkeley DB. Summer USENIX Technical
Conference. USENIX Association, 1999.

Panasas, Inc. Panasas ActiveScale Storage Clusteh@@005.
http://www.panasas.com/produgiserview.html.

D. A. Patterson, et al. A case for redundant arrays ofpee-
sive disks (RAID). ACM SIGMOD International Conference on
Management of Data, 1988.

S. Quinlan and S. Dorward. Venti: a new approach to aethi
storage. Conference on File and Storage Technologies. USEN
Association, 2002.

M. O. Rabin. Efficient dispersal of information for seityrload
balancing, and fault tolerancelournal of the ACM36(2):335—
348. ACM, April 1989.

S. Rhea, et al. Pond: the OceanStore prototype. Camferen
File and Storage Technologies. USENIX Association, 2003.

E. Riedel and J. Satran. OSD Technical Work Group, Qatob
2005. http://www.snia.org/techctivities/workgroups/osd/.

R. L. Rivest. The MD5 message-digest algorithiRFC-1321.
Network Working Group, IETF, April 1992.

M. Rosenblum and J. K. Ousterhout. The design and implemen
tation of a log-structured file systetACM Transactions on Com-
puter Systemd.0(1):26-52. ACM Press, February 1992.

Y. Saito, et al. FAB: building distributed enterpriseskl arrays
from commodity components. Architectural Support for Pro-
gramming Languages and Operating Systems. ACM, 2004.

M. Shapiro. Structure and encapsulation in distriduggstems:
the proxy principle. International Conference on Disttéuli
Computing Systems. |IEEE, 1986.

C. A. N. Soules, et al. Metadata efficiency in versionfitg sys-
tems. Conference on File and Storage Technologies. USENIX
Association, 2003.

J. D. Strunk, et al. Self-securing storage: protectiaga in com-
promised systems. Symposium on Operating Systems Design and
Implementation. USENIX Association, 2000.

P. Thambidurai and Y. Park. Interactive consistencyhwaitulti-

ple failure modes. Symposium on Reliable Distributed Systems.
IEEE, 1988.

Transaction Processing Performance Council. TPC Bench
mark C, December 2002. http://www.tpc.org/tpcc/ Revision
5.1.0.

H. Weatherspoon and J. D. Kubiatowicz. Erasure codsgepli-
cation: a quantitative approach. International Workshopeer-
to-Peer Systems. Springer-Verlag, 2002.

J. Wilkes, et al. The HP AutoRAID hierarchical storagstem.
ACM Transactions on Computer Systef¥1):108—136, Febru-
ary 1996.

J. J. Wylie. A read/write protocol family for versatile storage in-
frastructures PhD thesis. Technical report CMU-PDL-05-108,
Parallel Data Laboratory, Carnegie Mellon University, Geir
2005.

J. J. Wylie, et al. Survivable information storage syste|lEEE
Computer 33(8):61-68. IEEE, August 2000.

K. G. Yocum, et al. Anypoint: extensible transport swuitey

on the edge. USENIX Symposium on Internet Technologies and
Systems. USENIX Association, 2003.

Z. Zhang, et al. RepStore: a self-managing and selfstor-
age backend with smart bricks. International Conferencewn A
tonomic Computing. |IEEE, 2004.

	Introduction
	Versatile cluster-based storage
	Versatility in cluster-based storage
	Related work

	Ursa Minor
	Architecture
	Protocol family for versatile access
	Protocol family versatility
	Protocol guarantees and constraints
	Protocol operation and implementation

	Ursa Minor components
	On-line change of data distribution

	Evaluation
	Experimental setup
	Baseline NFS performance
	Ursa Minor: Versatility
	Specializing the data distribution
	Sharing the Ursa Minor cluster
	Specializing the block size
	Specializing the fault model

	Ursa Minor: On-line change

	Conclusions

